Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-tert-Butylbenzyl)-3-(4-chlorophenyl)-1*H*-pyrazole-5-carboxylic acid

Xiao-Ling Ding,^{a,b} Wen-Liang Dong,^a Yong Xia^a and Bao-Xiang Zhao^a*

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bCollege of Advanced Professional Technology, Qingdao University, Qingdao 266061, People's Republic of China Correspondence e-mail: sduzhao@hotmail.com

Received 29 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.182; data-to-parameter ratio = 18.4.

In the title compound, $C_{21}H_{21}ClN_2O_2$, the pyrazole and chlorobenzene rings are coplanar and make a dihedral angle of $79.7 (2)^{\circ}$ with the *tert*-butylbenzene ring. The crystal structure displays intermolecular O-H···O hydrogen bonding.

Related literature

For related literature, see: Jia et al. (2004); Cottineau et al. (2002); Finn et al. (2003); Wei et al. (2006); Xia et al. (2007).

Experimental

Crystal data

C21H21CIN2O2
$M_r = 368.85$
Triclinic, P1

a = 6.6835 (1) Å
b = 12.3218 (3) Å
c = 12.6783 (3) Å

$\alpha = 105.714 \ (2)^{\circ}$	
$\beta = 102.714 \ (1)^{\circ}$	
$\gamma = 96.003 \ (2)^{\circ}$	
V = 965.32 (4) Å ³	
Z = 2	

Data collection

Bruker APEX II CCD area-	15167 measured reflections
detector diffractometer	4403 independent reflections
Absorption correction: multi-scan	2700 reflections with $I > 2\sigma(I)$
(APEX2; Bruker, 2005)	$R_{\rm int} = 0.026$
$T_{\min} = 0.905, T_{\max} = 0.980$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.050 \\ wR(F^2) = 0.182 \end{array}$ 239 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$ S = 0.92 $\Delta \rho_{\rm min} = -0.17~{\rm e}~{\rm \AA}^{-3}$ 4403 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdotsO1^{i}$	0.82	1.81	2.624 (2)	177
Symmetry code: (i) -	r + 3 - v + 1	-7 ± 1		

Symmetry code: (i) -x + 3, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported by the Foundation of the Ministry of Education (No. 104112) and the Natural Science Foundation of Shandong Province (No. Y2005B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2063).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105-2108.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Finn, J., Mattia, K., Morytko, M., Ram, S., Yang, Y., Wu, X., Mak, E., Gallant, P. & Keith, D. (2003). Bioorg. Med. Chem. Lett. 13, 2231-2234.
- Jia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Woolfrey, J., Sinha, U., Arfsten, A. E., Edwards, S. T., Hutchaleelaha, A., Hollennbach, S. J., Lambing, J. L., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229-1234.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Wei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342-6347.
- Xia, Y., Ding, X.-L., Ge, Y.-Q., Liu, L.-D. & Zhao, B.-X. (2007). Acta Cryst. E63, 0394-0395.

Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$

 $0.48 \times 0.24 \times 0.09$ mm

T = 293 (2) K

Acta Cryst. (2007). E63, o3125 [doi:10.1107/S1600536807027006]

1-(4-tert-Butylbenzyl)-3-(4-chlorophenyl)-1H-pyrazole-5-carboxylic acid

X.-L. Ding, W.-L. Dong, Y. Xia and B.-X. Zhao

Comment

The pyrazole framework plays an essential role in biologically active compounds. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anticoagulant (Jia *et al.*, 2004), antipyretic, antibacterial, hypoglycaemic, antihyperglycaemic, analgesic, anti-inflammatory, sedative–hypnotic (Cottineau *et al.*, 2002; Finn *et al.*, 2003), and antitumour (Wei *et al.*, 2006) activities.

In the title compound, $C_{21}H_{21}CIN_2O_2$ (I), shown in Fig. 1, the pyrazole (C7—C9/N1/N2) and benzene (C1—C6) rings are coplanar within 0.01° and subtend a dihedral angle of 79.7 (2)° with the *tert*-butylbenzyl ring (C12—C17). The crystal structure displays a strong intermolecular O2—H2A···O1 interaction which leads to formation of hydrogen bonded dimeric units (Table 1 and Fig. 2).

Experimental

A mixture of ethyl 1-(4-*tert*-butylbenzyl)-3-(4-chlorophenyl)-1*H*-pyrazole-5-carboxylate (0.01 mol) that was synthesized according to a literature procedure (Xia *et al.*, 2007) and potassium hydroxide (0.02 mol) in ethanol (40 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and the residue was dissolved in water and acidified with hydrochloric acid (10%). The precipitate was filtered and dried to give a white solid (yield 95%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in acetone at room temperature for 3 d.

Refinement

All H atoms were placed at geometrically calculated positions and allowed to ride with C—H = 0.97Å (for CH₂ groups) and 0.96Å (for CH₃ groups), and O—H = 0.82 Å; their isotropic displacement parameters were set to 1.2 times (CH₂ groups) or 1.5 times (CH₃ and O—H groups) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1. **Fig 1** The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2. Fig 2 Packing view of (I), shown down the *a* axis. Hydrogen bonds leading to dimeric units are drawn as dashed lines.

1-(4-tert-Butylbenzyl)-3-(4-chlorophenyl)-1H-pyrazole-5-carboxylic acid

Z = 2
$F_{000} = 388$
$D_{\rm x} = 1.269 {\rm ~Mg~m}^{-3}$
Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Cell parameters from 3163 reflections
$\theta = 2.8 - 23.6^{\circ}$
$\mu = 0.22 \text{ mm}^{-1}$
T = 293 (2) K
Plate, colourless
$0.48 \times 0.24 \times 0.09 \text{ mm}$

Data collection

Bruker APEX II CCD area-detector diffractometer	4403 independent reflections
Radiation source: fine-focus sealed tube	2700 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (APEX2; Bruker, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.905, T_{\max} = 0.980$	$k = -15 \rightarrow 15$
15167 measured reflections	$l = -16 \rightarrow 16$

Refinement

Secondary at
Hydrogen sit sites
H-atom para
$w = 1/[\sigma^2(F)]$ where $P = (F)$

econdary atom site location: difference Fourier map lydrogen site location: inferred from neighbouring ites I-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.244P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 0.92	$(\Delta/\sigma)_{max} < 0.001$
4403 reflections	$\Delta\rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.1226 (4)	0.07086 (19)	0.3376 (2)	0.0712 (6)
C2	0.2138 (4)	0.1251 (2)	0.2756 (2)	0.0882 (8)
H2	0.1396	0.1232	0.2037	0.106*
C3	0.4169 (4)	0.1832 (2)	0.3194 (2)	0.0844 (7)
Н3	0.4781	0.2203	0.2764	0.101*
C4	0.5299 (3)	0.18702 (17)	0.42565 (18)	0.0614 (5)
C5	0.4330 (4)	0.1310 (2)	0.4865 (2)	0.0762 (6)
H5	0.5053	0.1331	0.5588	0.091*
C6	0.2311 (4)	0.0718 (2)	0.4422 (2)	0.0829 (7)
H6	0.1697	0.0329	0.4836	0.099*
C7	0.7457 (3)	0.24819 (16)	0.47313 (18)	0.0604 (5)
C8	0.8730 (3)	0.30918 (17)	0.42691 (18)	0.0627 (5)
H8	0.8383	0.3212	0.3563	0.075*
C9	1.0592 (3)	0.34740 (16)	0.50741 (18)	0.0603 (5)
C10	1.2526 (4)	0.41398 (17)	0.50558 (19)	0.0635 (5)
C11	1.1879 (4)	0.32868 (19)	0.7064 (2)	0.0723 (6)
H11A	1.3256	0.3220	0.6951	0.087*
H11B	1.1483	0.2699	0.7392	0.087*
C12	1.1974 (3)	0.44418 (19)	0.78821 (18)	0.0649 (5)
C13	1.0193 (4)	0.4834 (2)	0.8071 (2)	0.0868 (8)
H13	0.8903	0.4379	0.7676	0.104*
C14	1.0277 (4)	0.5887 (2)	0.8832 (2)	0.0891 (8)
H14	0.9038	0.6122	0.8937	0.107*
C15	1.2125 (3)	0.65996 (19)	0.94393 (18)	0.0669 (6)
C16	1.3897 (4)	0.6194 (3)	0.9236 (3)	0.1062 (11)
H16	1.5190	0.6646	0.9627	0.127*
C17	1.3814 (4)	0.5149 (3)	0.8477 (3)	0.1017 (10)

H17	1.5051	0.4916	0.8364	0.122*
C18	1.2253 (4)	0.7780 (2)	1.0281 (2)	0.0778 (6)
C19	1.0071 (5)	0.8031 (3)	1.0371 (3)	0.1174 (11)
H19A	0.9430	0.7489	1.0670	0.176*
H19B	0.9226	0.7969	0.9632	0.176*
H19C	1.0201	0.8792	1.0867	0.176*
C20	1.3529 (7)	0.7854 (3)	1.1457 (3)	0.1262 (13)
H20A	1.2867	0.7292	1.1725	0.189*
H20B	1.3622	0.8604	1.1966	0.189*
H20C	1.4902	0.7713	1.1422	0.189*
C21	1.3251 (7)	0.8704 (3)	0.9879 (4)	0.1315 (13)
H21A	1.3187	0.9444	1.0358	0.197*
H21B	1.2517	0.8617	0.9111	0.197*
H21C	1.4680	0.8635	0.9913	0.197*
Cl1	-0.13478 (10)	-0.00033 (6)	0.28340 (6)	0.0938 (3)
N1	0.8497 (3)	0.24867 (15)	0.57708 (16)	0.0668 (5)
N2	1.0407 (3)	0.30882 (14)	0.59649 (15)	0.0643 (5)
01	1.4087 (3)	0.44336 (14)	0.58439 (14)	0.0768 (4)
O2	1.2374 (3)	0.43813 (15)	0.41032 (14)	0.0803 (5)
H2A	1.3497	0.4729	0.4113	0.120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0608 (13)	0.0616 (12)	0.0773 (14)	0.0088 (10)	0.0171 (11)	-0.0002 (10)
C2	0.0760 (16)	0.1025 (19)	0.0709 (15)	-0.0056 (14)	0.0053 (13)	0.0204 (14)
C3	0.0798 (16)	0.0944 (17)	0.0725 (15)	-0.0052 (13)	0.0172 (13)	0.0241 (13)
C4	0.0611 (12)	0.0511 (10)	0.0671 (12)	0.0102 (9)	0.0197 (10)	0.0072 (9)
C5	0.0665 (14)	0.0834 (15)	0.0759 (14)	0.0050 (12)	0.0143 (12)	0.0262 (12)
C6	0.0690 (15)	0.0851 (16)	0.0945 (18)	0.0018 (12)	0.0243 (14)	0.0289 (14)
C7	0.0623 (12)	0.0483 (10)	0.0639 (12)	0.0077 (9)	0.0169 (10)	0.0062 (8)
C8	0.0688 (13)	0.0545 (11)	0.0613 (11)	0.0077 (9)	0.0187 (10)	0.0112 (9)
C9	0.0655 (12)	0.0469 (10)	0.0656 (12)	0.0084 (9)	0.0211 (10)	0.0096 (9)
C10	0.0679 (13)	0.0520 (10)	0.0676 (13)	0.0081 (9)	0.0220 (11)	0.0106 (9)
C11	0.0684 (14)	0.0708 (13)	0.0747 (14)	0.0067 (11)	0.0081 (11)	0.0274 (11)
C12	0.0578 (12)	0.0715 (13)	0.0630 (12)	0.0026 (10)	0.0092 (10)	0.0247 (10)
C13	0.0565 (13)	0.0803 (16)	0.1011 (19)	-0.0058 (11)	0.0084 (13)	0.0070 (14)
C14	0.0572 (14)	0.0888 (17)	0.1026 (19)	0.0058 (12)	0.0121 (13)	0.0083 (14)
C15	0.0597 (12)	0.0746 (13)	0.0606 (12)	-0.0040 (10)	0.0091 (10)	0.0219 (10)
C16	0.0536 (14)	0.114 (2)	0.108 (2)	-0.0141 (14)	0.0096 (14)	-0.0162 (18)
C17	0.0515 (13)	0.111 (2)	0.111 (2)	0.0024 (13)	0.0132 (14)	-0.0079 (17)
C18	0.0788 (16)	0.0740 (14)	0.0697 (14)	-0.0030 (12)	0.0123 (12)	0.0157 (11)
C19	0.109 (2)	0.111 (2)	0.113 (2)	0.0151 (19)	0.035 (2)	-0.0011 (19)
C20	0.160 (3)	0.107 (2)	0.0766 (18)	0.007 (2)	-0.008 (2)	0.0073 (17)
C21	0.158 (3)	0.089 (2)	0.157 (3)	0.001 (2)	0.065 (3)	0.043 (2)
Cl1	0.0648 (4)	0.0897 (5)	0.1040 (5)	-0.0023 (3)	0.0161 (3)	0.0024 (4)
N1	0.0624 (11)	0.0606 (10)	0.0721 (11)	0.0007 (8)	0.0161 (9)	0.0165 (8)
N2	0.0618 (11)	0.0580 (9)	0.0677 (11)	0.0046 (8)	0.0137 (9)	0.0153 (8)

O1 O2	0.0684 (10) 0.0777 (11)	0.0830 (11) 0.0827 (11)	0.0738 (10) 0.0757 (10)	-0.0029 (8) -0.0071 (9)	0.0172 (8) 0.0174 (8)	0.0226 (8) 0.0262 (8)
Geometric para	meters (Å, °)					
C1—C2		1 359 (4)	C12-	-C13	13	375 (3)
C1 - C6		1 360 (4)	C13-	-C14	13	379 (4)
C1—Cl1		1.743 (2)	C13-	-H13	0.9	9300
C2—C3		1.383 (4)	C14-	-C15	1.3	370 (3)
С2—Н2		0.9300	C14-	-H14	0.9	9300
C3—C4		1.378 (3)	C15-	-C16	1.3	381 (4)
С3—Н3		0.9300	C15-	-C18	1.5	534 (3)
C4—C5		1.380(3)	C16–	-C17	1.3	371 (4)
C4—C7		1.468 (3)	C16–	-H16	0.9	9300
C5—C6		1.381 (3)	C17-	-H17	0.9	9300
С5—Н5		0.9300	C18–	-C21	1.5	519 (4)
С6—Н6		0.9300	C18–	-C20	1.5	519 (4)
C7—N1		1.346 (3)	C18–	-C19	1.5	544 (4)
С7—С8		1.399 (3)	C19–	-H19A	0.9	9600
C8—C9		1.368 (3)	C19–	-H19B	0.9	9600
C8—H8		0.9300	C19–	-H19C	0.9	9600
C9—N2		1.363 (3)	C20-	-H20A	0.9	9600
C9—C10		1.465 (3)	C20-	-H20B	0.9	9600
C10—O1		1.218 (3)	C20–	-H20C	0.9) 600
C10—O2		1.306 (3)	C21-	-H21A	0.9	9600
C11—N2		1.460 (3)	C21–	-H21B	0.9) 600
C11—C12		1.503 (3)	C21-	-H21C	0.9	9600
C11—H11A		0.9700	N1—	N2	1.3	343 (2)
C11—H11B		0.9700	O2—	H2A	0.8	3200
C12—C17		1.361 (3)				
C2—C1—C6		120.3 (2)	C15-	-C14C13	12	2.2 (2)
C2—C1—Cl1		120.1 (2)	C15-	-C14—H14	11	8.9
C6-C1-Cl1		119.6 (2)	C13-	-C14—H14	11	8.9
C1—C2—C3		120.1 (3)	C14-	-C15-C16	11	5.6 (2)
C1—C2—H2		119.9	C14-	-C15-C18	12	3.1 (2)
С3—С2—Н2		119.9	C16–	-C15-C18	12	1.4 (2)
C4—C3—C2		120.9 (2)	C17-	-C16C15	12	2.3 (2)
С4—С3—Н3		119.5	C17-	-C16—H16	11	8.9
С2—С3—Н3		119.5	C15-	-C16—H16	11	8.9
C3—C4—C5		117.6 (2)	C12-	-C17C16	12	1.8 (2)
C3—C4—C7		121.5 (2)	C12-	-C17—H17	11	9.1
C5—C4—C7		120.8 (2)	C16–	-C17—H17	11	9.1
C4—C5—C6		121.4 (2)	C21-	-C18C20	10	9.4 (3)
C4—C5—H5		119.3	C21–	-C18C15	10	9.6 (2)
С6—С5—Н5		119.3	C20–	-C18C15	11	0.7 (2)
C1—C6—C5		119.6 (2)	C21–	-C18-C19	10	7.3 (3)
С1—С6—Н6		120.2	C20–	-C18-C19	10	8.1 (3)
С5—С6—Н6		120.2	C15-	-C18C19	11	1.6 (2)
N1—C7—C8		110.39 (19)	C18–	-C19—H19A	10	9.5

N1—C7—C4	119.21 (19)	C18—C19—H19B	109.5
C8—C7—C4	130.4 (2)	H19A—C19—H19B	109.5
C9—C8—C7	105.5 (2)	C18—C19—H19C	109.5
С9—С8—Н8	127.2	H19A—C19—H19C	109.5
С7—С8—Н8	127.2	H19B—C19—H19C	109.5
N2-C9-C8	107.10 (19)	C18—C20—H20A	109.5
N_{2} C9 C10	122.7 (2)	C18—C20—H20B	109 5
C8 - C9 - C10	1302(2)	$H_{20}A - C_{20} - H_{20}B$	109 5
01 - 010 - 02	1243(2)	C18 - C20 - H20C	109.5
01 - 010 - 02	1235(2)	$H_{20}^{-0} = C_{20}^{-0} = H_{20}^{-0} C_{20}^{-0}$	109.5
$0^{2}-0^{1}0^{-0}$	123.3(2) 112.2(2)	$H_{20}B_{-}C_{20}H_{20}C$	109.5
N_{2} C_{11} C_{12}	112.2(2) 113.02(18)	C18 - C21 - H21A	109.5
N2H11 A	109.0	C18 - C21 - H21R	109.5
C12_C11_H11A	109.0	H_{21}^{-1}	109.5
N2_C11_H11B	109.0	C18 - C21 - H21C	109.5
$C_{12} = C_{11} = H_{11B}$	109.0	$\frac{10}{10} \frac{11}{10} 11$	109.5
	107.9	$H_2 IA = C_2 I = H_2 IC$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8	$\begin{array}{c} n_2 1 B \longrightarrow C_2 1 \longrightarrow n_2 1 C \\ N_2 N_1 C_7 \end{array}$	109.3
C17 - C12 - C13	110.0(2)	$N_2 = N_1 = C_1$	105.08(17)
	122.0(2)	NI	111.31 (18)
	121.4 (2)	NI - N2 - CII	118.34 (18)
C12—C13—C14	121.4 (2)	C9—N2—C11	130.25 (19)
C12—C13—H13	119.3	C10—O2—H2A	109.5
С14—С13—Н13	119.3		
C6—C1—C2—C3	-1.0 (4)	C11—C12—C13—C14	179.1 (3)
Cl1—C1—C2—C3	178.9 (2)	C12—C13—C14—C15	0.1 (5)
C1—C2—C3—C4	0.1 (4)	C13-C14-C15-C16	0.2 (4)
C2—C3—C4—C5	-0.1 (4)	C13-C14-C15-C18	179.3 (2)
C2—C3—C4—C7	179.9 (2)	C14—C15—C16—C17	0.0 (5)
C3—C4—C5—C6	0.9 (4)	C18—C15—C16—C17	-179.1 (3)
C7—C4—C5—C6	-179.1 (2)	C13—C12—C17—C16	0.8 (5)
C2—C1—C6—C5	1.8 (4)	C11—C12—C17—C16	-178.9 (3)
Cl1—C1—C6—C5	-178.16 (19)	C15-C16-C17-C12	-0.5 (5)
C4—C5—C6—C1	-1.7 (4)	C14—C15—C18—C21	-117.2 (3)
C3—C4—C7—N1	-179.6 (2)	C16—C15—C18—C21	61.9 (4)
C5—C4—C7—N1	0.4 (3)	C14—C15—C18—C20	122.0 (3)
C3—C4—C7—C8	-0.5 (3)	C16—C15—C18—C20	-58.9 (4)
C5—C4—C7—C8	179.5 (2)	C14—C15—C18—C19	1.6 (4)
N1—C7—C8—C9	-0.2 (2)	C16—C15—C18—C19	-179.3 (3)
C4—C7—C8—C9	-179.43 (19)	C8—C7—N1—N2	-0.2 (2)
C7—C8—C9—N2	0.6 (2)	C4—C7—N1—N2	179.10 (16)
C7—C8—C9—C10	178.73 (19)	C7—N1—N2—C9	0.6 (2)
N2-C9-C10-O1	-2.6 (3)	C7—N1—N2—C11	177.22 (17)
C8—C9—C10—O1	179.5 (2)	C8—C9—N2—N1	-0.7 (2)
N2-C9-C10-O2	177.59 (18)	C10—C9—N2—N1	-179.06 (17)
C8 - C9 - C10 - O2	-0.3(3)	C8 - C9 - N2 - C11	-176 87 (19)
N_2 —C11—C12—C17	-1312(3)	C10-C9-N2-C11	48(3)
N_2 —C11—C12—C13	491(3)	C12-C11-N2-N1	-97 8 (2)
C_{17} C_{12} C_{13} C_{14}	-0.6(4)	C12-C11-N2-C9	78.1.(3)
012 012 011	··· (·)	0.2 011 1.2 07	, 0.1 (3)

Hydrogen-bond geometry (Å, °) D—H···A D···A D—H···A O2—H2A···O1ⁱ 0.82 1.81 2.624 (2) 177 Symmetry codes: (i) -x+3, -y+1, -z+1. V V V V

